Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin

نویسندگان

  • M. C. Zhou
  • H. Ishidaira
  • H. P. Hapuarachchi
  • J. Magome
  • A. S. Kiem
  • K. Takeuchi
چکیده

One of key inputs to hydrological modeling is the potential evapotranspiration, either from the interception (PET0) or from the soil water of root zone (PET). The Shuttleworth–Wallace (S–W) model is developed for their estimation. In this parameterization, neither experimental measurement nor calibration is introduced. Based on IGBP land cover classification, the typical thresholds of vegetation parameters are drawn from the literature. The spatial and temporal variation of vegetation LAI is derived from the composite NOAAAVHRR NDVI using the SiB2 method. The CRU database supplies with the required meteorological data. They are all publicly available. The developed S–W model is applicable at the global scale, particularly to the data-poor or ungauged large basins. Using the century monthly time series of CRU TS 2.0 and the monthly composite NOAAAVHRR NDVI from 1981 to 2000, annual PET is estimated 1354 mm over the Mekong River basin, spatially distributed strikingly non-uniformly from 300 to 2040 mm, and seasonally changed significantly with LAI. By replacing the monthly with the 10-day composite NDVI and the albedo of 0.10 with 0.15 for substrate soil surface, annual PET relatively decreases less than 4% and 1.7%, respectively over the whole basin. The correlation with pan evaporation (Epan) is quite scattered but grouped with the vegetation types and consistent with a rough ratio as reported

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Surface Runoff of Plasjan River Using WetSpa Hydrological Model

In recent decades, water scarcity has become a global problem due to the growth of the world's population as well as the increase in per capita water consumption. Therefore, planning and managing water resources to prevent potential risks such as floods and drought in the future is one of the important measures of water resources management. One of the important measures to avoid potential risk...

متن کامل

Future climate change impact on hydrological regime of river basin using SWAT model

Hydrological components in a river basin can get adversely affected by climate change in coming future. Manipur River basin lies in the extreme northeast region of India nestled in the lesser Himalayan ranges and it is under severe pressure from anthropogenic and natural factors. Basin is un-gauged as it lies in remote location and suffering from large data scarcity. This paper explores the imp...

متن کامل

The flow hydrograph modeling using GIS and distributed hyrdological model, in Dinvar Watershed, Karkheh, Iran

In this paper, the modeling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells Summation of the flow responses from the cells, result the flow hydrograph from this area basin.A method is presented to simulation the flow hydrograph within a river basin using the hydrological model WetSpa. WetSpa is a GIS-b...

متن کامل

Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspi...

متن کامل

Multidecadal Trend of Basin-Scale Evapotranspiration Estimated Using AVHRR Data in the Krishna River Basin, India

Evapotranspiration (ET) is one of the most critical components of terrestrial water balance. Estimating reliable ET across a large region is, however, difficult due to the limited number of ground monitoring stations and the heterogeneous land surface conditions. In this work, spatially distributed monthly ET estimates in the Krishna River Basin, India, were derived using Advanced Very High Res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006